The Clinical Implementation of Precision Cancer Medicine

HIMSS 2017
Precision Medicine IT Solutions – Driving Clinical Quality and Value

Mark Lewis MD
Director, Gastrointestinal Medical Oncology
Intermountain Healthcare
Overview

- Challenges in Precision Cancer Medicine
- Intermountain Clinical Cancer Genomics Program
- IT Platform and Architecture
Identify and Target Genomic Alterations

Variants
1. FGFR1
2. P53
3. MEK1
4. EGFR
5. HER2

drug 1
drug 2
drug 3
drug 4

Cancer cell
Genomic analysis
Is it really that simple?
Tumor Heterogeneity
Tumor Evolution

Mutations driving relapse present at low frequency

Anticipation-based chemotherapy

Puente, Nat. Genet., 2013
Number of Mutations in Human Cancers

A.
- Glioblastoma (14)
- Medulloblastoma (8)
- Rhabdoid cancer (4)
- Neuroblastoma (12)
- Acute lymphocytic leukemia (11)

B.
- Non-Hodgkin lymphoma (74)
- Breast cancer (33)
- Hepatocellular cancer (38)
- Pancreatic cancer (45)
- Lung cancer (non-small cell) (147)
- Lung cancer (small cell) (163)
- Esophageal adenocarcinoma (57)
- Esophageal squamous cell carcinoma (79)
- Gastric cancer (53)
- Colorectal cancer (66)
- Ovarian cancer (42)
- Endometrial cancer (49)
- Prostate cancer (41)
- Melanoma (135)
So Many Targets ...

B. Vogelstein, Science. 2013
Precision Cancer Medicine

1. Molecular Profiling

2. Prognostic Markers
 - Markers predictive of drug sensitivity/resistance
 - Markers predictive of adverse events
Intermountain Healthcare

- *Integrated, multidisciplinary healthcare system*
- *22 hospitals and 182 clinics*
- *"Open system" (facilities open to MDs & patients)*
- *Leader in value-based care (SelectHealth)*
Intermountain Cancer Genomics

- Personalized Medicine Clinic
- Genomic Testing
- Molecular Tumor Board
- Drug Procurement
- Outcomes and Cost Tracking

www.precisioncancer.org

HQ and core lab in St. George, UT
Molecular Tumor Board

- Multi-institutional participants
- Experts in Cancer Genomics
- Interpretation of Genomics
Building the Program: IT

- Robust internal data warehousing

- Multi-year EMR transition from homebrew to Cerner

- EMRs and data warehouses could not accommodate genomic data, precision medicine workflows, genomics CDS, & outcomes tracking

- Partnered with Syapse on Precision Medicine software platform
<table>
<thead>
<tr>
<th>PM Clinic</th>
<th>Day 1</th>
<th>Molecular analysis (NGS)</th>
<th>Day 7-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy or FFPE</td>
<td>Day 2-4</td>
<td>Analytics</td>
<td>Day 9-11</td>
</tr>
<tr>
<td>Pathology Review</td>
<td>Day 5</td>
<td>Molecular Tumor Board</td>
<td>Day 12-13</td>
</tr>
<tr>
<td>Sample Prep</td>
<td>Day 6</td>
<td>Results and Treatment</td>
<td>Day 14-15</td>
</tr>
</tbody>
</table>
Clinical Cancer Genomics Workflow

- **Eligibility:** All Stage 4 Cancer Patients
- **Cancer Genomic Testing**
- **Molecular Tumor Board:** Treatment Guidance
- **Drug Procurement**
- **Outcomes Tracking**
- **Best Practice Updates**

Decision Support: Variant Interpretation

Clinical Trial Enrollment
Clinical + Genomics Data Integration

In-House Precision Genomics Lab

Sequencing & Report

Integrated repository of structured data

syapse

Clinical Systems

PACS
EMR
Data Warehouse
Drug Administration
LIS
CPOE
Registry
Clinical Data Integration

• *Source clinical data from:*
 • Intermountain data warehouse
 • Direct systems feeds (lab, imaging, pharmacy, analytics)

• *HL7 v3, FHIR, and Syapse API all leveraged for interoperability*

• *Ongoing: Cerner integration*
Interoperability Challenges

- **Defining standards for exchanging genomic data**
 - There is no industry standard for exchanging genomic data
 - Current integration with send-out labs via Syapse Lab Certification program to address clinical need for interoperability
 - HL7 Clinical Genomics group making great progress with FHIR - not used by labs yet

- **Need to be able to seamlessly use specialized tools like Syapse in EHR-based clinical workflow**
 - Built on SMART, CDS-hooks, etc.

- **No widely adopted way to exchange a patient’s cancer treatment history**
Genomics Data Standards

• Chose to build tumor genomics lab in-house to better control the data quality and standards. Outsource germline genetics labs, but assure data interoperability.

• Robust structured data capture of genomics assay results, interpretation, reports, and treatment guidance.

• Collaboratively developed genomics ontology with Syapse that has become standard for many other health systems.
Integrated Clinical and Molecular Data

Clinical History

- **Encounter Summary**
 - ECOG Score: 1 2 2 2 3 2 2 2 3 2 3 2 2 2 2 2 2
 - Encounters:
 - APR:
 - MAY:
 - JUN:
 - JUL:
 - AUG:
 - SEP:
 - OCT:
 - NOV:
 - DEC:

- **Tumor Size**
 - Size(CM): [Graph showing tumor size over time]

- **Treatments**
 - Gemcitabine: [Graph showing treatment over time]
 - Carboplatin: [Graph showing treatment over time]
 - Trametinib: [Graph showing treatment over time]
Genomic Data

Detailed Report: TumorOme Dx (TRF-34)

Patient Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Jacob D. Moyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient DOB</td>
<td>1954-04-11</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
</tr>
<tr>
<td>Patient ID</td>
<td>PT-15</td>
</tr>
</tbody>
</table>

Specimen Information

<table>
<thead>
<tr>
<th>Surgical Procedure Date</th>
<th>04/02/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen Source</td>
<td>Lung</td>
</tr>
</tbody>
</table>

Physician Information

<table>
<thead>
<tr>
<th>Ordering Physician</th>
<th>Lincoln Naclaudi, MD, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathologist</td>
<td>Jeremy Wallentine, MD</td>
</tr>
</tbody>
</table>

Molecular Tumor Board Interpretation

Based on the genomic profile of your patient's tumor, the Molecular Tumor Board's interpretation suggests the following potential therapeutic interventions in the ranked list below:

<table>
<thead>
<tr>
<th>Tumor Board Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

This ranking is based on the interpretation of an expert panel and is not associated with specific clinical trial data.

Findings Associated with Approved Therapies

5 somatic mutations reported.
0 associated therapies approved for patient's tumor type.
2 associated therapies approved for other tumor types.
Molecular Tumor Board

Click to edit the recommendation
Clinical Decision Support

• Molecular Tumor Board reviews all cases, then enters guidance into Syapse software

• All interpretations are stored in a structured, semantic knowledge-base

• Interpretations can be re-used for clinically -- and genomically-- similar cases, enabling scale

• CDS provides community oncologists with treatment planning guidance
Clinical Decision Support
Specialty Pharmacy Integration

• Puts the “action” in precision medicine

• Enables automated drug procurement

• Specialty drug prescription and patient clinical + genomic data sent to Intermountain’s internal specialty pharmacy for processing

• Specialty drug procurement success rate is 80%
Specialty Pharmacy Integration

Guidance

Recommended Treatments

- **Tremelimum (Mekinist)**
 - RELEVANT VARIANTS: BRAF V600
 - Order

- **Everolimus (Afinitor)**
 - RELEVANT VARIANTS: STK11 Loss
 - Order

- **Temozolomide (Temodal)**
 - RELEVANT VARIANTS: STK11 Loss
 - Order

- **Dabrafenib (Depuy)**
 - RELEVANT VARIANTS: STK11 Loss
 - Order

Recommendation Notes

Patient should complete current course of first line chemotherapy and then be reassessed in 4 weeks.

Clinical Trials

- **A Study of Zealosar (Vemurafenib) in Patients With BRAF V600 Mutation-Positive Cancers**
 - NCT0154007
 - Order
 - Email

Prescription Order Form

INTERMOUNTAIN CANCER GENOMICS
PRESCRIPTION ORDER FORM
REQUESTED ON 04/17/2015
PATIENT: TEST-F5142807 TESTER DATE OF BIRTH: 1950-02-17

- **FIRST NAME**: Test-F5142807
- **LAST NAME**: Tester
- **MIDDLE INITIAL**: Date of Birth: 1950-02-17
- **PATIENT ID**: Pat-12345
- **STREET ADDRESS**: 101 Syaspe St
- **CITY**: Palo Alto
- **STATE**: CA
- **POSTAL CODE**: 93333
- **TRADE NAME**: Hecaprin
- **DOSE**: 2
- **NOTES**
Learn From Real-World Evidence

- Robust outcomes & cost tracking
- Ability to query all data at point of care
- Used in MTB to improve care recommendations
Precision Medicine Software: Point of Care

- Review patient’s molecular & clinical history
- Order and review molecular testing
- Receive clinical decision support & procure specialty drugs
- Coordinate care through an optimized workflow
- Learn and revise care plans over time
Program Outcomes

• 25x increase in patients receiving precision medicine: ~15% of total cancer population

• Specialty drug procurement success rates increased 5x, to 82%

• 64% of all patients had their care management changed

• Substantial clinical improvement and cost savings
Patient Case: Lung Cancer

- 56-year-old man with metastatic lung cancer

- Progressed through standard chemotherapy regimen

- Genomic analysis: BRAF mutation (not V600E)
Patient Case: Lung Cancer (cont’d)

- **Targeted treatment x 9 months**

Before

After
Intermountain Precision Medicine Cohort Study

Patients received standard trx within Intermountain

- 36 standard trx match: dx, age, gen, #prev. trx
 - Assess: -PFS -Cost of care

61 with actionable mutation, and received targeted trx

- 36 genomics+trg trx match: dx, age, gen, #prev. trx
 - Assess: -PFS -Cost of care

25 without match: dx, age, gen, prev. trx
Study Outcomes

• *Progression-Free Survival*
 • Precision Medicine cohort = 22.9 weeks
 • Standard of Care cohort = 12.0 weeks

• *Total Cost of Care*
 • Precision Medicine cohort = $3,204 per week
 • Standard of Care cohort = $3,501 per week
Intermountain BioRepository

- 4 million archival samples
- Accumulated from 1975-present
- Longitudinal annotated healthcare outcome data (30+ years)
High Throughput Sequencing

- **Accommodated by HiSeq X10**
- **20,000 genomes per year**
- **Enables sequencing of our biorepository**
Oncology Precision Network (OPeN)

- Multi-institutional cancer genomics data consortium
- Inform point-of-care treatment decisions
- 11 States, 79 hospitals
- Data shared = data viewed
- Solves n=1 problem
Definitions of a high-quality pathway

• Expert driven
• Up-to-date
• Comprehensive
• Promotes participation in clinical trials
• Integrated, cost-effective technology & decision support
• Efficient processes for communication & adjudication
• Outcomes-driven results
• Promotes research and continuous quality improvement

American Society of Clinical Oncology Criteria for High-Quality Clinical Pathways in Oncology
Summary and Conclusions

• Precision cancer medicine is clinically available now

• Precision oncology requires a dedicated IT system, integrated with the EMR

• Healthcare IT trends are rapidly converging

• IT infrastructure for managing genomic data is absent at most institutions
Future Considerations

- True implementation of precision medicine requires outcomes measurement and a clinical champion.

- Emerging IT is quickly outpacing clinical adaptation (national EMR use = 75+%).

- Value-based care models will favor cost-saving technologies, such as precision medicine.

- Healthcare is hungry for tech innovations, but structurally flawed for implementation.
Thank you!

Lincoln Nadauld, MD, PhD
Derrick Haslem, MD
Terence Rhodes, MD
Craig Nichols, MD
Ramya Thota, MD
Jonathan Hirsch