Biomedical Device Integration into an Electronic Health Record
March 1st 2016

Michael Fraai, M.S., CCE
Executive Director Biomedical Engineering and Device Integration
Brigham and Women’s Hospital

DISCLAIMER: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official policy or position of HIMSS.
Conflict of Interest

L. Michael Fraai, M.S, C.C.E.
Has no real or apparent conflicts of interest to report.
Agenda

• Overview of the Brigham and Women’s Hospital (BWH)
• Scope of BWH’s Biomedical Device Integration
 • Planning stages
 • Project testing stages
• Support
• Lesson learned
Learning Objectives

• Outline of a collaborative Biomedical Device Integration process
• Application of the methodology used for Biomedical Device Integration for EHR implementation
• Use of proposed template for EHR implementation
• Outline of the critical steps during the planning stages for Biomedical Device Integration with EHR implementation
STEPS: Treatment/Clinical

Devices being integrated
Increase in number of devices supported

Manual data entry of vital signs
Decrease in data omissions due to automation
Brigham and Women’s Hospital

- 793 Licensed beds
- 146 ICU beds
- 489 Telemetry beds
- 43 Operating rooms
Brigham and Women’s Hospital

• National leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement, educating and training

• BWH employs ~16,000 people; 3,000 physicians, fellows and residents; more than 1,000 researchers and 3,113 nurses

• In 2011, performed the first full face transplantation in the US

• Inpatient admissions totaled approximately 46,000

• Biomedical Engineering supports ~26,000 patient care devices

• BWH went live on 05/30/15 with one of the largest EHR installations in the US that included Biomedical device integration
Partners eCare Goals

• One Patient, One record, One Bill
• ↑ Consistent (standardized) processes
• One system integrated across the enterprise
 – 2 Academic Medical Centers
 – 17 Community hospitals
• Project completed in phases
• Intricate Governance structure
 – Enterprise decisions
 – Entity provided subject matter experts and had some autonomy
Biomed Device Integration Scope

• Goal
 – Standardized approach that can be scaled across the enterprise
• Brigham and Women’s Hospital

<table>
<thead>
<tr>
<th>Patient Care Area</th>
<th>Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Anesthesia Machines, Physiologic Monitors</td>
</tr>
<tr>
<td>ICU</td>
<td>Physiologic Monitors, Ventilators</td>
</tr>
<tr>
<td>ED</td>
<td>Physiologic Monitors, Ventilators</td>
</tr>
<tr>
<td>L&D</td>
<td>Fetal Monitors, Physiologic Monitors</td>
</tr>
<tr>
<td>PeriOp (PreOp/PACU)</td>
<td>Anesthesia Machines, Physiologic Monitors</td>
</tr>
<tr>
<td>Procedural Units</td>
<td>Physiologic Monitors</td>
</tr>
<tr>
<td>Inpatient (Non-ICU)</td>
<td>Physiologic Monitors</td>
</tr>
</tbody>
</table>
Planning stages

• Leverage our device integration strategy

• Develop a project plan that can be integrated across the hospital and enterprise as a master project plan

• Determine the scope of what will be needed
Leverage the Device Integration Strategy

Clinical Informatics (Nursing, Physician and Anesthesia)

- Identify team of RNs, MDs and Biomed to work on the process
- Identify clinical parameters for documentation in EHR (leverage ACD & PIMS work)
- Determine workflow impact relative to medical device integration from EHR
- Provide solutions for work flow changes needed due to EHR architecture

Clinical need mapping on Biomedical patient care technology

- Identify the devices relative to the parameters
 - Inventory & document manufacturers, models and software versions
 - Determine device output and connectivity method
 - Identify gaps between clinical needs and technology capabilities
 - Determine cost impact to integrate parameters not available on current devices

Develop middle ware approach/strategy

- Develop a decision matrix and cost comparison to determine approach
 - Identify potential areas not covered with current connectivity
 - Infrastructure
 - Identify middle ware to use
 - Develop cost estimate to remediate gaps
 - Identify additional workflow impacts based on middleware solution

Infrastructure Plan

- Identify infrastructure needs:
 - Cabling
 - Power
 - Network hardware
 - Mounting
 - IS connectivity
 - Patient care network
- Develop a project timeline leveraging low census periods

Middleware selection

- Collaborative work with Biomed, EHR and IS for selection
- Identify potential long-term implication
- Determine the specifications needed
- Select middleware to use
- Develop cost estimate to remediate gaps
- Address potential gaps in clinical need

Middleware installation & device connectivity corrections

- Network provisioning needs:
 - Network requests (firewalls, routers etc)
- Purchasing process to address the gap analysis performed (software upgrades and replacements)
- Perform (potential) software upgrades for connectivity
- Perform (potential) device replacements

Testing

- Develop the testing scenarios based on identified workflow
- Scenario validation with a broader clinical group
- Technical testing of the system
- Technical testing based on the scenarios

Validation and Verification Testing

- Develop solutions to address unanticipated testing outcomes
- Verify accuracy of the system
- Technical testing to address the gap analysis performed (software upgrades and replacements)

Clinical testing of the scenario and work flow implications

Identify unintended outcomes

- Develop solutions to address unanticipated testing outcomes

Develop the testing scenarios based on identified workflow

- Scenario validation with a broader clinical group
- Technical testing of the system
- Technical testing based on the scenarios

Clinical testing of the scenario and work flow implications

Identify unintended outcomes

- Develop solutions to address unanticipated testing outcomes

Develop the testing scenarios based on identified workflow

- Scenario validation with a broader clinical group
- Technical testing of the system
- Technical testing based on the scenarios

Clinical testing of the scenario and work flow implications

Identify unintended outcomes

- Develop solutions to address unanticipated testing outcomes

Develop the testing scenarios based on identified workflow

- Scenario validation with a broader clinical group
- Technical testing of the system
- Technical testing based on the scenarios

Clinical testing of the scenario and work flow implications

Identify unintended outcomes

- Develop solutions to address unanticipated testing outcomes
Process to build this plan

- Develop a strategy that meets the hospital’s evolving clinical needs and goals
- Develop a multi-year vision to complete the project
- Understand the clinical drivers and the hospital’s strategic vision
- Technology understanding
 - Map clinical needs on the available technology
- Plan for standardization
- Build relationships (Vendors, clinicians, contractors)
- Collaborate with IT
- Plan for scaling and continuous improvement
Project plan

• Timelines aligned with:
 – EHR Vendor
 – Integration Partners
 – BWH
 – Partners

• Thorough, robust and complete specification planning
<table>
<thead>
<tr>
<th>Item</th>
<th>Task Owner</th>
<th>Before December 2013</th>
<th>January ’14</th>
<th>February ’14</th>
<th>March ’14</th>
<th>April ’14</th>
<th>May ’14</th>
<th>June ’14</th>
<th>July ’14</th>
<th>August ’14</th>
<th>September ’14</th>
<th>October ’14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Informatics</td>
<td></td>
</tr>
<tr>
<td>Clinical Needs mapping on Biomedical Patient Care Technology</td>
<td></td>
</tr>
<tr>
<td>Develop Middleware Approach/Strategy</td>
<td></td>
</tr>
<tr>
<td>Infrastructure Plan</td>
<td></td>
</tr>
<tr>
<td>Middle Ware Preparation</td>
<td></td>
</tr>
<tr>
<td>Middleware Installation & Device Connectivity Corrections</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>Validation and Verification Testing</td>
<td></td>
</tr>
<tr>
<td>Department Training</td>
<td></td>
</tr>
</tbody>
</table>
Stages of the EHR Biomed Device Integration

• Project Cost estimate
• Infrastructure preparation
• Make Model Variable (MMV) testing
• Room readiness
• Production readiness
• Production Validation

➢ There are more testing stages involved for interfaces
Project estimate

• Gap analysis of current vs. future state
 – What is in the inventory?
 • Make, model, software version
 – Requirements to standardize devices in project scope
 • Can the device be upgraded?
 – BMDI Resource calculation
<table>
<thead>
<tr>
<th>Item</th>
<th>Device Type</th>
<th>Qty</th>
<th>Time (Hrs)</th>
<th>Total Time</th>
<th>Now 9/35</th>
<th>Later</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physiologic Monitor - Solar</td>
<td>346</td>
<td>1.80</td>
<td>53.28</td>
<td>31.35</td>
<td>21.93</td>
</tr>
<tr>
<td>2</td>
<td>Physiologic Monitor - B850</td>
<td>26</td>
<td>1.80</td>
<td>46.80</td>
<td>26.36</td>
<td>19.44</td>
</tr>
<tr>
<td>3</td>
<td>Physiologic Monitor - B450</td>
<td>18</td>
<td>1.80</td>
<td>32.40</td>
<td>19.13</td>
<td>13.27</td>
</tr>
<tr>
<td>4</td>
<td>Physiologic Monitor - Dash</td>
<td>624</td>
<td>1.80</td>
<td>903.86</td>
<td>560.68</td>
<td>343.18</td>
</tr>
<tr>
<td>5</td>
<td>Anesthesia Machine</td>
<td>82</td>
<td>1.60</td>
<td>131.20</td>
<td>54.15</td>
<td>77.05</td>
</tr>
<tr>
<td>6</td>
<td>MRI Anesthesia Machine</td>
<td>2</td>
<td>1.60</td>
<td>3.20</td>
<td>1.20</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>In Vivo Monitors</td>
<td>6</td>
<td>2.50</td>
<td>15.00</td>
<td>6.00</td>
<td>9.00</td>
</tr>
<tr>
<td>8</td>
<td>HLM machine</td>
<td>6</td>
<td>2.45</td>
<td>14.70</td>
<td>6.00</td>
<td>8.70</td>
</tr>
<tr>
<td>9</td>
<td>Telemetry Locations</td>
<td>597</td>
<td>0.25</td>
<td>149.25</td>
<td>50.50</td>
<td>98.75</td>
</tr>
<tr>
<td>10</td>
<td>Physiologic Monitor - B450</td>
<td>20</td>
<td>1.80</td>
<td>36.00</td>
<td>11.00</td>
<td>25.00</td>
</tr>
<tr>
<td>11</td>
<td>Physiologic Monitor - Solar</td>
<td>4</td>
<td>1.80</td>
<td>7.20</td>
<td>2.20</td>
<td>5.00</td>
</tr>
<tr>
<td>12</td>
<td>Physiologic Monitor - Dash</td>
<td>16</td>
<td>1.80</td>
<td>28.80</td>
<td>8.80</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total time to get devices EHR ready:

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWH</td>
<td>1905.11</td>
</tr>
<tr>
<td>850 Boylston</td>
<td>495.71</td>
</tr>
<tr>
<td>FXB</td>
<td>1409.40</td>
</tr>
</tbody>
</table>

OR Areas
Inpatient & other areas

Assumptions:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Hrs/wk</th>
<th>Total hrs/wk</th>
<th>Duration</th>
<th>Time to complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 Internal group
3 technicians for 10hrs/wk, 2 CE interns for 20 hrs/wk, 1 CE resource for 20</td>
<td></td>
<td>108.00</td>
<td>18</td>
<td>4.59</td>
</tr>
<tr>
<td>2</td>
<td>1 Internal group + additional 2 dedicated (contract) BMETs full time</td>
<td></td>
<td>188.00</td>
<td>10</td>
<td>2.64</td>
</tr>
<tr>
<td>3</td>
<td>3 contract BMETs backfill</td>
<td></td>
<td>120</td>
<td>16</td>
<td>4.13</td>
</tr>
<tr>
<td>4</td>
<td>6 Internal BMET using OT</td>
<td></td>
<td>90</td>
<td>21</td>
<td>5.51</td>
</tr>
</tbody>
</table>
Project estimate

- Infrastructure cost
 - Cabling
 - Power
 - IS closet work
 - Mounting
- Middleware cost
- Vendor configuration cost
- BME resources
 - In-house, OT, backfill
High level architecture
NOTE: 4 High availability spare Gateway not reflected
Make Model Variable Testing

• Parameter mapping for interfaces into EHR

• Does the make and the model generate the variable output in the format that is expected or desired?

• Map the values into EHR through the middle ware

• *MMV Testing through the stages*
Make Model Variable Testing stages
Room Readiness

• Each location is EHR ready
 – Monitor model
 – Software version
 – Network and redundant network connection
 – Power
 – Mounting
Device specific time allocation

<table>
<thead>
<tr>
<th>Task</th>
<th>Time</th>
<th>Task</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Software Upgrade</td>
<td>0.00</td>
<td>Unity ID check or replace mounts</td>
<td>0.50</td>
</tr>
<tr>
<td>Unity ID function check</td>
<td>0.10</td>
<td>Verify monitor configuration (Unit & Label)</td>
<td>0.10</td>
</tr>
<tr>
<td>Unity ID software Upgrade</td>
<td>0.25</td>
<td>Misc. tasks (Gowning, travel, cover up unused jacks, label jacks & documentation)</td>
<td>0.65</td>
</tr>
<tr>
<td>Unity ID configuration</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Task</th>
<th>Time (Hrs)</th>
<th>BMET</th>
<th>Non Technical</th>
<th>Now</th>
<th>Later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar/B850</td>
<td>Software Upgrade</td>
<td>0.00</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Unity ID function check</td>
<td>0.10</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Unity ID software Upgrade</td>
<td>0.25</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Unity ID configuration</td>
<td>0.10</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Unity ID check or replace mounts</td>
<td>0.50</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Verify monitor configuration (Unit & Bed Name)</td>
<td>0.10</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Label</td>
<td>0.10</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Misc. tasks (Gowning, travel, cover up unused jacks, label jacks & documentation)</td>
<td>0.65</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.80</td>
<td></td>
<td>0.55</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>
Production readiness

• One parameter from each location through all the integration stages and into the EHR test environment
 – Device mapping is being tested
 – Configuration testing
 – Test ADT in-bound (bed mapping)
 – Labeling
• Planning around a functioning hospital
 – Census!
<table>
<thead>
<tr>
<th>Area</th>
<th>Week Starting at 16:00 on</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
<th>Number of beds</th>
<th>Hrs needed</th>
<th>Days needed with 2 teams</th>
<th>Best days</th>
</tr>
</thead>
<tbody>
<tr>
<td>16A</td>
<td>10/5</td>
<td>60.00%</td>
<td>66.67%</td>
<td>86.67%</td>
<td>80.00%</td>
<td>93.33%</td>
<td>66.67%</td>
<td>73.33%</td>
<td>15</td>
<td>7.5</td>
<td>1.25</td>
<td>Sun</td>
</tr>
<tr>
<td></td>
<td>10/12</td>
<td>66.67%</td>
<td>46.67%</td>
<td>73.33%</td>
<td>86.67%</td>
<td>73.33%</td>
<td>80.00%</td>
<td>100.00%</td>
<td>Mon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/19</td>
<td>93.33%</td>
<td>80.00%</td>
<td>87.50%</td>
<td>86.67%</td>
<td>93.33%</td>
<td>73.33%</td>
<td>93.33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/26</td>
<td>60.00%</td>
<td>46.67%</td>
<td>81.25%</td>
<td>53.33%</td>
<td>100.00%</td>
<td>80.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>70.00%</td>
<td>60.00%</td>
<td>82.19%</td>
<td>76.67%</td>
<td>90.00%</td>
<td>75.00%</td>
<td>88.89%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16B</td>
<td>10/5</td>
<td>73.33%</td>
<td>60.00%</td>
<td>73.33%</td>
<td>60.00%</td>
<td>100.00%</td>
<td>66.67%</td>
<td>86.67%</td>
<td>7.5</td>
<td>1.25</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/12</td>
<td>66.67%</td>
<td>80.00%</td>
<td>60.00%</td>
<td>73.33%</td>
<td>86.67%</td>
<td>66.67%</td>
<td>80.00%</td>
<td>Mon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/19</td>
<td>86.67%</td>
<td>100.00%</td>
<td>86.67%</td>
<td>73.33%</td>
<td>100.00%</td>
<td>93.33%</td>
<td>73.33%</td>
<td>Tues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/26</td>
<td>66.67%</td>
<td>53.33%</td>
<td>73.33%</td>
<td>93.33%</td>
<td>53.33%</td>
<td>80.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>73.33%</td>
<td>73.33%</td>
<td>73.33%</td>
<td>75.00%</td>
<td>85.00%</td>
<td>76.67%</td>
<td>80.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16C</td>
<td>10/5</td>
<td>62.50%</td>
<td>62.50%</td>
<td>87.50%</td>
<td>87.50%</td>
<td>87.50%</td>
<td>87.50%</td>
<td>75.00%</td>
<td>4</td>
<td>0.67</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/12</td>
<td>50.00%</td>
<td>25.00%</td>
<td>50.00%</td>
<td>75.00%</td>
<td>100.00%</td>
<td>75.00%</td>
<td>100.00%</td>
<td>Mon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/19</td>
<td>62.50%</td>
<td>87.50%</td>
<td>75.00%</td>
<td>37.50%</td>
<td>100.00%</td>
<td>37.50%</td>
<td>87.50%</td>
<td>Tues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/26</td>
<td>100.00%</td>
<td>62.50%</td>
<td>75.00%</td>
<td>62.50%</td>
<td>62.50%</td>
<td>87.50%</td>
<td></td>
<td>Wed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>68.75%</td>
<td>59.38%</td>
<td>71.88%</td>
<td>65.63%</td>
<td>87.50%</td>
<td>71.88%</td>
<td>65.63%</td>
<td>Sun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16D</td>
<td>10/5</td>
<td>33.33%</td>
<td>50.00%</td>
<td>83.33%</td>
<td>50.00%</td>
<td>33.33%</td>
<td>83.33%</td>
<td>66.67%</td>
<td>3</td>
<td>0.5</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/12</td>
<td>50.00%</td>
<td>50.00%</td>
<td>50.00%</td>
<td>50.00%</td>
<td>50.00%</td>
<td>66.67%</td>
<td>66.67%</td>
<td>Mon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/19</td>
<td>83.33%</td>
<td>66.67%</td>
<td>83.33%</td>
<td>66.67%</td>
<td>83.33%</td>
<td>83.33%</td>
<td>50.00%</td>
<td>Tues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/26</td>
<td>50.00%</td>
<td>83.33%</td>
<td>66.67%</td>
<td>50.00%</td>
<td>66.67%</td>
<td>83.33%</td>
<td></td>
<td>Wed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>54.17%</td>
<td>62.50%</td>
<td>70.83%</td>
<td>54.17%</td>
<td>58.33%</td>
<td>79.17%</td>
<td>45.83%</td>
<td>Sun</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Production Validation

• Test environment moved to production environment
• Test to ensure that migration was successful
• Validate critical areas
• Repeat test of areas that failed during production readiness
EHR Support

- Build a collaborative plan that illustrates how support will be handled between BME, IS and application teams
- Seamless call response for clinicians regardless of where the call starts
 - BME
 - IS
- Call triage schematic
Seamless process regardless of where the call originates, there is the same outcome.
BME Training

• ↑ focus from device to system approach
• Some concepts are abstract
 – Servers are not on-site
 – Pictures or even bring the staff to the location
• Use of schematic diagrams
• Allow staff to participate in the clinical training
 – Hear questions that will be asked
• Scenario based training
Schematic Diagram

- Correct

 Monitor
 Monitor Name: PACU-01

 Gateway
 PACU-01 = BWHPACU_01

 Integration Engine
 BWHPACU_01

 EHR
 BWHPACU_01 = MON 1012 BWH

- Incorrect

 Monitor
 Monitor Name: PACU-01

 Gateway
 PACU-01 = BWH PACU_01

 EHR
 BWHPACU_01

 EHR
 BWHPACU_01 = MON 1012 BWH

From: Prakhar Kapoor
Example of Scenario

- **Telemetry Scenario #2**: Nursing staff call helpdesk due to tele patient data not populating in the patients flowsheet. Information on ticket states “Patient returned from being off-unit and telemetry data is no longer showing in their flowsheet”.

- **Biomed Checkpoint**: Demonstrate ability to check patient admit location in EHR. Once conflict identified (patient moved in EHR, but left admitted to old location in tele) move patient @ CIC and show data transfer over. Verify data showing in patients chart before leaving.

- **Follow-up Questions with Scenario**: Did staff move patient @ central or discharge/re-admit. Make sure staff knows different approaches and implications with respect to data @ CIC/bedside monitor.

- Once patient moved, staff asks about pulling demographics to monitor/CIC. Also ask about data for last 10 minutes that was going into wrong patients chart.
 - **Biomed Checkpoint**: Demonstrate knowledge/ability of pulling ADT to the CIC.
 - **Biomed Checkpoint**: Identify data flowchart fix as non-biomed. Direct user to EHR analyst team (verify correct team this type of issue should go to).
STEPS: Treatment/Clinical

Following a methodical process

Reduces variability and project timeline creep
Lesson Learned

• Importance of documentation along the process
• Develop a thorough and methodical approach
• Project plan and timelines
• Cost estimates
• Collaborative approach
 – EHR vendor
 – Information Systems and Biomedical Engineering
 – Application teams
 – Clinicians (MDs and RNs)
Questions

Contact:

L. Michael Fraai: Ifraai@partners.org

LinkedIn:

https://www.linkedin.com/in/michael-fraai-1b777b3