Optimizing Drug-Dose Checking to Minimize Alert Fatigue

March 4, 2016

David Kaelber, MD, PhD, MPH
CMIO & Vice-President of Health Informatics
The MetroHealth System
Professor Internal Medicine, Pediatrics, Epidemiology, and Biostatistics
Case Western Reserve University

DISCLAIMER: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official policy or position of HIMSS.
Conflict of Interest

David Kaelber, MD, PhD, MPH

Consulting Fees: UpToDate North America
Advisory Board

Other: CareSource Board of Directors
Agenda

• Introduction/Background
• What we built
• Summary/Discussion
Learning Objectives

• Define the opportunities and challenges of drug-dose checking

• Design a strategic approach to effective implementation of drug-dose checking

• Identify specific ways to optimize drug-dose checking
STEPS™: An Introduction of How Benefits Were Realized for the Value of Health IT

- Optimizing drug-dose alerts increases CPOE/EHR satisfaction by minimizing alert fatigue
- Preventing adverse events related to dosing errors improves clinical outcomes.
- Avoidance of adverse events reduces care costs
MetroHealth

System Overview
- 1 tertiary care academic hospital
- 21 outpatient facilities
- 300+ resident/fellow physicians
- 500 staff physicians
- 1,200 nurses
- 30,000 inpatient stays/year
- 100,000 ED visits/year
- 1,000,000 outpatient visits/yr
- Affiliated with Case Western Reserve University
- Public healthcare system for Cuyahoga County

Total EHR data
- 1 million patients
- 15 million visits
- 120 million labs/pathology
- 750,000 imaging studies
- 15 years of data in Epic

Key Events
- 1999 - Ambulatory EHR (EpicCare w/ Cadence, Prelude, & Resolute)
- 2004 - EHR in ED (ASAP)
- 2009 - Inpatient EHR (Epic w/ Inpatient Willow and Beacon)
- 2011 - CareEverywhere, e-Rx, MyChart, Nurse Triage
- 2012 - Epic Enterprise Contract, MU Stage 1
- 2013 - BCMA, EpicCare Link, Welcome
- 2014 - ADT, Beaker, Bedtime, OpTime, Research, SBO
- 2015 - Epic 2014 (3/7/15)

1st public healthcare system in US to install Epic in the outpatient setting (1999)!!!
1st public healthcare system in US with Epic to achieve HIMSS Stage 7 EMRAM Ambulatory & Hospital recognition (2014)!!!
1st public healthcare system with Epic to receive Davies Enterprise Award (2015)!!!
Drug-Dose Checking

12 month old girl being given 2 teaspoons of amoxicillin twice a day for 10 days for otitis media

Double dose missed by:
- CPOE
- Med-Peds prescribing physicians
- Dispensing pharmacist
- 2 Med-Peds physician parents
Drug-Dose Checking

- Up to 60% of prescribing errors are dosing errors
- Dosing errors represent the most common type of preventable adverse drug events
- 5-8% of all orders have dosing errors (~1/3 may be clinical significant)

Types of Drug-Dose Checking

- Below minimum daily dose
- Below minimum frequency dose
- Below minimum duration dose
- Below minimum single dose
- Exceeds maximum duration dose
- Exceeds maximum frequency dose
- Exceeds maximum daily dose
- Exceeds maximum single dose
- Exceeds daily prn dose
Drug-Dose Checking Strategy

• Drug-dose clinical decision support should improve patient safety.

• Drug-dose CDS need optimization to be effective.

• Optimized drug-dose CDS should enhance sensitivity and specificity, reducing clinical low risk alerts.
Methods - Strategies

- Turned off incomplete information drug-dose alerts.
- Turned off minimum drug-dose alerts.
- Increased single drug-dose threshold to 125%.
- Increased daily drug-dose threshold to 125%.
- Increased dose frequency drug-dose threshold by 2 doses per day.
- Changed drug specific maximum single and daily drug-dose alert parameters on top 1% of alerting drugs.
Methods - Overview

• Default drug-dose alerts from Epic electronic health record using default Medi-Span® drug data.
• 1st quarter 2013 silent alerts for all drug-dose alerts (single dose, daily dose, dose frequency, and dose duration alerts), in different care settings and patient ages.
• System-wide and drug specific strategies analyzed to optimize drug-dose alerts.

834,911 orders and 104,098 alerts

PSNs - 32 drug-dosing errors (24 wrong dose, 7 wrong frequency, and 1 wrong duration)
Results: Drug-dosing alerts by category, care setting

<table>
<thead>
<tr>
<th>Alert type</th>
<th>Baseline Drug-Dose alerts, % (n)</th>
<th>ED, % (n)</th>
<th>IP, % (n)</th>
<th>OP, % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below minimum daily dose</td>
<td>24% (24,508)</td>
<td>12% (1684)</td>
<td>24% (12,922)</td>
<td>40% (9,902)</td>
</tr>
<tr>
<td>Below minimum frequency</td>
<td>10% (10,330)</td>
<td>7% (718)</td>
<td>50% (5,163)</td>
<td>43% (4,449)</td>
</tr>
<tr>
<td>Exceeded maximum duration</td>
<td>5% (4,972)</td>
<td>5% (245)</td>
<td>16% (816)</td>
<td>79% (3911)</td>
</tr>
<tr>
<td>Exceeded maximum frequency</td>
<td>16% (16,566)</td>
<td>17% (2,840)</td>
<td>55% (9,143)</td>
<td>28% (4,583)</td>
</tr>
<tr>
<td>Exceeded maximum daily dose</td>
<td>23% (24,183)</td>
<td>15% (3,662)</td>
<td>59% (14,177)</td>
<td>26% (6,344)</td>
</tr>
<tr>
<td>Exceeded maximum single dose</td>
<td>23% (23,539)</td>
<td>20% (4,594)</td>
<td>54% (12,760)</td>
<td>26% (6,171)</td>
</tr>
<tr>
<td>Total</td>
<td>100% (104,098)</td>
<td>13% (13,743)</td>
<td>53% (54,981)</td>
<td>34% (35,371)</td>
</tr>
</tbody>
</table>
Results: Drug-dosing alerts by patient population type

<table>
<thead>
<tr>
<th>Alert type</th>
<th>Baseline Drug-Dose alerts, % (n)</th>
<th>Pediatrics, % (n)</th>
<th>Non-Pediatrics Only Populations, % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below minimum daily dose</td>
<td>24% (24,508)</td>
<td>7% (1,787)</td>
<td>93% (23,814)</td>
</tr>
<tr>
<td>Below minimum frequency</td>
<td>10% (10,330)</td>
<td>5% (559)</td>
<td>95% (9,772)</td>
</tr>
<tr>
<td>Exceeded maximum duration</td>
<td>5% (4,972)</td>
<td>4% (208)</td>
<td>96% (4,764)</td>
</tr>
<tr>
<td>Exceeded maximum frequency</td>
<td>16% (16,566)</td>
<td>5% (634)</td>
<td>95% (15,93)</td>
</tr>
<tr>
<td>Exceeded maximum daily dose</td>
<td>23% (24,183)</td>
<td>10% (2,307)</td>
<td>90% (21,87)</td>
</tr>
<tr>
<td>Exceeded maximum single dose</td>
<td>23% (23,539)</td>
<td>9% (2,206)</td>
<td>91% (21,333)</td>
</tr>
<tr>
<td>Total</td>
<td>100% (104,098)</td>
<td>7% (7,701)</td>
<td>93% (96,397)</td>
</tr>
</tbody>
</table>
Results: Impact

<table>
<thead>
<tr>
<th>System Level Drug-Dose Alerts</th>
<th>Optimization of drug-dose alerts, % (n)</th>
<th>Optimized drug-dose alerts per hundred orders</th>
<th>Decrease in drug-dose alerting, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum drug-dose daily dose alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Minimum drug-dose frequency alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose duration alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose single dose alerts (increased to 125% of threshold)</td>
<td>42% (19,503)</td>
<td>2.3</td>
<td>17%</td>
</tr>
<tr>
<td>Maximum drug-dose daily dose alerts (increased to 125% of threshold)</td>
<td>45% (21,052)</td>
<td>2.5</td>
<td>13%</td>
</tr>
<tr>
<td>Maximum drug-dose dose frequency alerts (increased to more than 2 dose/day of threshold)</td>
<td>14% (6,433)</td>
<td>0.8</td>
<td>61%</td>
</tr>
<tr>
<td>Sub-Total System Level Drug-Dose Alerts</td>
<td>100% (46,988)</td>
<td>5.6</td>
<td>45%</td>
</tr>
</tbody>
</table>
Results: Impact

<table>
<thead>
<tr>
<th>Drug-Dose Alert Category</th>
<th>Optimization of drug-dose alerts, % (n)</th>
<th>Optimized drug-dose alerts per hundred orders</th>
<th>Decrease in drug-dose alerting, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Level Drug-Dose Alerts</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose single dose alerts (top 22 individual dose adjustment customized)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose daily dose alerts (top 22 individual dose adjustment customized)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Sub-Total Individual Drug-Dose Alerts</td>
<td>0% (0)</td>
<td>0</td>
<td>100%(^1)</td>
</tr>
<tr>
<td>Total</td>
<td>25,455</td>
<td>0.030</td>
<td>76%</td>
</tr>
</tbody>
</table>

1. Approximate
Discussion

• Out of the box drug-dosing alerts produces high (~12%) alerting rates.

• Primary, system approaches decreased drug-dose alerting to 5% (46,988/834,911) of orders.

• Secondary, drug-specific approaches decreased drug-dose alerting to 3% (25,455/834,911).

• Simple approaches significantly decrease drug-dose alerts, while maintaining drug-dose alerts for potentially clinically significant drug-overdoses.
Outline

• Introduction/Background

• What we built

• Summary/Discussion
Where do dose warnings come from?

- Medication Database Vendors
- Medi-Span or First DataBank
Initial Rollout

• Pharmacists as guinea pigs
• Too many warnings
• Had to turn it off
• New in 2014 - In-line Dose Warnings
• 4 Strategies to Turn Down the Noise
Interactions Settings Editor (FIS)

- 9 Categories of Filtering
- We un-filtered 4
- Dose Allowance Percentage
- Admin > Med Warnings Admin > Interactions Setting Editor
Dose Checking

<table>
<thead>
<tr>
<th>Category</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent allowance for min dose</td>
<td></td>
</tr>
<tr>
<td>Percent allowance for max dose</td>
<td>25</td>
</tr>
<tr>
<td>Filter warnings for improperly configured medications?</td>
<td>Yes</td>
</tr>
<tr>
<td>Filter no data warnings?</td>
<td>Yes</td>
</tr>
<tr>
<td>Show warnings if default gestational age is used?</td>
<td></td>
</tr>
<tr>
<td>Filter lifetime dose calculation error warnings?</td>
<td></td>
</tr>
</tbody>
</table>

Filter the following types/ranges:

<table>
<thead>
<tr>
<th>Types/Ranges</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daily-Low</td>
</tr>
<tr>
<td>2</td>
<td>Duration-Exceed</td>
</tr>
<tr>
<td>3</td>
<td>Duration-Low</td>
</tr>
<tr>
<td>4</td>
<td>Frequency-Low</td>
</tr>
</tbody>
</table>

Filter the following missing condition warnings:

<table>
<thead>
<tr>
<th>Condition Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Creatinine Clearance</td>
</tr>
<tr>
<td>2</td>
<td>Age</td>
</tr>
<tr>
<td>3</td>
<td>Body Surface Area</td>
</tr>
<tr>
<td>4</td>
<td>Problem List Diagnosis</td>
</tr>
</tbody>
</table>
Dose Warning Analysis

• Report from Willow Menu
• Started when all warnings still filtered
• Save in Excel, narrow down to warnings you plan to un-filter
• Use pivot tables to target most frequent warnings for deeper analysis
Dosing Rule Editor

- From Medication Database Vendor
- Multiple Rules per Medication
- Factors Considered - Age, ICD-9 codes, Maintenance VS One-time
- Custom Rules Go to the Top of the List
- Admin > Med Warnings Admin > Dosing Rule Editor

Ex: Bivalirudin in Cath lab, inc daily dose limit to 42 mg/kg
RXR Record

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Single Dose</th>
<th>Daily Dose</th>
<th>Frequency</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: ONE-TIME</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: MAINTENANCE</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: ONE-TIME</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: MAINTENANCE</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: MAINTENANCE</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Age: 13 week old–18 year old (90–6,569 day old)</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
<tr>
<td>Dx: 040.89, CrCl ≤ 5.00 mL/min, Dose Type: ONE-TIME</td>
<td>≤ 0 mg/kg</td>
<td>≤ 0 mg/kg</td>
<td>0 mg/kg</td>
<td>0 mg/kg</td>
</tr>
</tbody>
</table>
SmartGroup (OSQ)

• Smart Groups used to build Smart Sets (Order Sets)
• Can set single dose maximum within the Smart Group
• Can’t override Frequency or Daily Max Warnings
• Can’t use for Mixture Records

Ex: Cefazolin 3gm Preop Doses
SmartGroup
Frequencies (EFQ)

- PRN Frequencies can calculate number of doses per day
- Every 5 min PRN = 288 doses/day
- Remove the Schedule Settings
- No Effect on Dispensing or MAR
- Can effect BPA for dose too soon, exclude the EFQ

Ex: Sublingual nitroglycerin tab every 5 minutes PRN
Frequencies (EFQ)
Project Roll-out

• 2013 – Silent alert data analysis

• 2014 – Turn on for inpatient pharmacists (part of HIMSS Stage 7 effort)

• 2015 – Turn on for all prescribing providers in all settings (inpatient, outpatient, ED)
Outline

• Introduction/Background
• What we built
• Summary/Discussion
Lessons Learned

• Do not turn on “out of the box” drug-dose checking
• Conduct “silent” drug-dose checking analysis
• Develop system level setting strategy
• Develop sustainable individual drug strategy
• Role out to inpatient pharmacists first

Implement drug-dose checking to help our patients (and in the way not to drive prescribers or pharmacist crazy)!
Outcomes/Impact

- Decreased inappropriate doses to patients
- Physicians and pharmacists saw more alerts (true positive and false positive)
- No direct impact to nurses
STEPS™: A Summary of How Benefits Were Realized for the Value of Health IT

- Increased CPOE/EHR satisfaction due to optimized drug-dose alerts and minimized alert fatigue.
- Avoidance of adverse events, reduced care costs, and increased ROI.
- Drug-dose CDS optimized alert sensitivity and specificity based on patient-specific criteria.
I would like to acknowledge and thank Wolters Kluwer (www.wolterskluwer.com) for contributing its Medi-Span® data to this study and presentation.