Optimizing Blood Administration to Enhance Patient Safety

Session #224, February 23, 2017

Meg Furukawa MN, RN-BC, Nursing Informaticist, UCLA Health
Speaker Introduction

Meg Furukawa MN, RN-BC

Nursing Informaticist

UCLA Health
Conflict of Interest

Meg Furukawa MN, RN-BC
Has no real or apparent conflicts of interest to report.
Agenda

• Blood transfusion overview and guidelines
• Pre-optimization state
• Optimization of blood product administration
• Optimization of blood product ordering
• Outcomes
• Challenges
• Lessons learned
Learning Objectives

• Summarize the patient safety outcomes resulting from the optimization of the blood administration process

• Identify three benefits for clinicians gained from optimizing blood administration

• List two outcomes of using embedded clinical decision support to guide ordering of blood product
Learning Objectives

• Discuss challenges faced when optimizing blood administration and strategies to overcome them

• Describe methods to use during training and implementation to enhance the user experience
An Introduction of How Benefits Were Realized for the Value of Health IT

650-750 units of blood administered weekly without errors

Increase in guideline-indicated transfusions

Decrease in 2+ unit transfusions

Increase in provider and staff satisfaction with optimization and safety features
Blood Administration

• Transfusions are generally beneficial to the patient

• Risks
 – Transfusion reactions
 – Disease transmission
 – Volume overload
 – Increased length of stay
 – Death
Red Blood Cell Transfusion Guidelines

• AABB clinical practice guidelines
 – More restrictive approach for transfusions
 – Lower threshold for hemoglobin levels
 • 7 g/dl – hemodynamically stable hospitalized adults
 • 8 g/dl – orthopedic/cardiac surgery, preexisting CV disease
 – Standard practice to initiate transfusions with 1 unit of blood

Current Practice

• Approximately 30,000 units of blood transfused annually
• Hybrid blood administration process with multiple systems
• Orders based on hemoglobin (hgb) level or provider’s ordering habits
 – Blood Bank order sets
 – One-off or panel orders
• No checks and balances between various systems
• Difficult to determine the amount of blood a patient received
Optimization Goals

• Ensure correct unit of blood is administered to the correct patient
• Streamline the blood administration process to promote patient safety
• Ensure there was an order for every unit transfused
• Create an easy way for clinicians to see a transfusion summary
• Assist providers with appropriately ordering red blood cells (RBC)
 • Standardize transfusion practice
 • Reduce routine orders for 2 units of RBCs
 • Increase % of guideline-indicated transfusions
Optimizing Blood Administration

- Blood Administration Module
 - Barcode scanning
 - Verify patient identification at the bedside
 - Match a blood product dispensed from Blood Bank to the order
 - Release of blood products
 - Dual verification
 - Transfusion documentation
 - Comprehensive blood transfusion report
Blood Administration Project Planning

• Multidisciplinary team
 – Members from each application team
 • Inpatient, Ambulatory, ED, OR, Anesthesia, Radiology, Lab
 – Interface experts

• Subject Matter Experts
 – Nursing
 – Blood Bank
 – Providers
Blood Administration Project Planning

In Scope
- Inpatient units
- ED
- Pre-op and PACU
- Labor and Delivery
- Dialysis
- Apheresis
- Perfusion

Out of Scope
- Massive transfusions
- Anesthesia
- Cath Lab
- Ambulatory
Blood Administration Project Planning

• Educate group on module features and functionality
• Identify current and new workflows for blood administration
• Analyze current and new build for blood administration
• Identify resources needed, roles and responsibilities
• Obtain approval from various governance groups
• Establish timeline
Blood Administration Project Planning

• Decisions needed
 – Configuration of scanning window
 – Flowsheet documentation
 – Blood release form
 – Blood administration workflow
 – Blood transfusion report
Blood Administration Module Build

• Update transfusion orders
• Update nursing tasks for transfusion
• Update blood administration flowsheet
• Update Transfusion policy
Blood Administration Module Build

- Create the barcode scanning window
- Create the Blood Bank release form
- Create blood transfusion report
- Create scanning compliance report
Blood Administration Testing

- Prepare orders
- Transfuse orders
- Blood release form
- Scanning
- Documentation

- Interfaces
- Blood Bank system
- Order sets
- Clinical users
Blood Administration Training

- Classroom training
- Mobile Skills Lab
 - Competency Checklist
- Focused inservices
 - Blood Bank
 - Perfusion
 - Dialysis
 - Apheresis
Blood Administration Implementation

• SuperUsers on each unit
• SuperUsers in Blood Bank
• Rounding on the units
• Blood Administration FAQs

• Standard Operating Procedure
• Triage Desk tickets
• Issues list
• Optimization list
Blood Administration Issues

• Lost ability to enter nurse’s phone number on release form
• Nurses forgot to complete flowsheet group
• Incorrect flowsheet documentation
Blood Administration Outcomes

- Successfully scanning 650-750 units of blood per week
- All blood administered has an active transfusion order
- Warnings appear if there is a barcode or order mismatch
- 13 less clicks to request a unit of blood from Blood Bank
- Simplified transfusion ordering
- Easy to see the patient’s transfusion history for the hospitalization
- Nurses appreciate the additional safety that scanning provides
Optimizing Blood Product Ordering

• Create a best practice advisory (BPA) to drive providers to an order set

• Embed real-time clinical decision support into the ordering process
 – Display the patient’s most recent hemoglobin result in the RBC order
 – Display verbiage with the transfusion guidelines based on the patient’s hemoglobin result
 – Default the RBC order to 1 unit unless hgb < 7 or > 10 g/dl
 – Add an order to draw a hgb level 15 minutes after the transfusion of the first unit of RBCs is completed
Blood Ordering Project Planning

• Multidisciplinary team
 – Members from the orders and clinical decision support teams
 – Interface experts

• Subject Matter Experts
 – Providers
 – Blood Bank
 – Quality
Blood Ordering Project Planning

• In scope
 – Red blood cell product orders
 – Adult inpatients

• Out of scope
 – Oncology order sets
 – ED
 – Pediatric/NICU inpatients
 – Massive transfusions
Blood Ordering Project Planning

• Educated group on functionality
• Identify resources needed, roles and responsibilities
• Obtained approval from various governance groups
• Established timeline
Blood Ordering Project Planning

• Decisions needed
 – Build solution to use
 – Verbiage to include
 – Order defaults
Clinical Decision Support Build

• Add the patient’s most recent hemoglobin result to the order view
• Add default hemoglobin lab order if no result in past 48 hours
• Configure logic so that the correct verbiage appears based on the patient’s latest hemoglobin result
• Update RBC orders and order sets with logic, guideline verbiage and order defaults
• Create best practice advisory to send the provider to the order set
• Create BPA firing report
RBC Orders

CONSIDER RESTRICTIVE TRANSFUSION STRATEGY. Your patient’s hemoglobin (Hgb) is between 7.0 and 7.9 g/dL which is well tolerated by most hospitalized, stable patients even in the presence of pre-existing cardiovascular disease.

Limit transfusions to:

1. Patients with clinical significant signs or symptoms of anemia or ongoing active bleeding

2. Patients with pre-existing cardiovascular disease AND symptoms of chest pain, orthostatic hypotension, tachycardia unresponsive to fluid or CHF

3. Postoperative surgical patients, or s/p PCI
RBC Orders

CONSIDER TRANSFUSION ONLY IN SPECIFIC CIRCUMSTANCES. Your patient’s hemoglobin (hgb) is between 8.0 and 10.0 g/dL.

Limit transfusions to:

1. Patients with clinically significant signs or symptoms of anemia or ongoing bleeding.
2. Patients with pre-existing cardiovascular disease AND symptoms of chest pain, orthostatic hypotension, tachycardia unresponsive to fluid, or CHF
RBC Orders

CONSIDER TRANSFUSION ONLY IN EXCEPTIONAL CIRCUMSTANCES. Your patient’s hemoglobin (Hgb) is > 10.0 g/dL. Red blood cell transfusion is NOT generally indicated.
Blood Ordering Testing

• Clinical scenarios
• Various and multiple hemoglobin results
• BPA firing appropriately
Blood Ordering Training and Implementation

• E-learning for providers and nurses
• Demonstrations at department meetings
• Roaming trainers
• SuperUser support
Blood Ordering Issues

• Hemoglobin result did not display for one rarely used component
• RBC order not available for some patients
Outcomes: Guideline-Indicated Transfusions

- Pre-optimization – 25%
- Post-optimization – 49% (range 42.7% to 51.5%)
Outcomes: Transfusion orders with 2+ units transfused

- Pre-optimization – 43%
- Post-optimization – 28%
Blood Optimization Challenges

• Blood is administered everywhere
• Workflow discovery
• Resistance to change
• Technology takes more time
• Separate Blood Bank system
• Educating staff
Blood Optimization Lessons Learned

• Start early
• Include the world
• Find and involve operational and clinical champions
• Testing is crucial
• Train as close as possible to the implementation
• Bring training and support to the staff
• Regular meetings
A Summary of How Benefits Were Realized for the Value of Health IT

- Decrease in 2+ unit transfusions
- Increase in guideline-indicated transfusions
- 650-750 units of blood administered weekly without errors
- Increased provider/staff satisfaction with optimization and safety features
Questions

Meg Furukawa MN, RN-BC
Nursing Informaticist
UCLA Health
MFurukawa@mednet.ucla.edu