EMR Surveillance Intervenes to Reduce Risk Adjusted Mortality

March 2, 2016
Katherine Walsh, MS, DrPH, RN, NEA-BC
Vice President of Operations, Houston Methodist Hospital
Michael Rothman, PhD, Chief Science Officer, PeraHealth

DISCLAIMER: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official policy or position of HIMSS.

www.himssconference.org
Conflict of Interest

Katherine E. Walsh, MS, DrPH, RN, NEA-BC

Has no real or apparent conflicts of interest to report.
Conflict of Interest

Michael Rothman, PhD

Salary: PeraHealth
Ownership Interest: Equity owner in PeraHealth
Agenda

• Origins and Development of an Early Warning System (EWS)
• Science behind one EWS
• Potential Applications of the EWS
• Implementation at Houston Methodist Hospital
• Clinical Outcomes
• Next Steps
Learning Objectives

• Analyze existing EMR data, including vital signs, labs and nursing assessments, to identify patient deterioration and identify actions to reduce adverse outcomes

• Create consistent communication mechanisms to obviate handoff lapses and manage patient care over the course of multiple shifts

• Develop and formalize surveillance protocols to assure patients get appropriate attention and care

• Describe implementation practices to maximize the utilization of the data
An Introduction of How Benefits Were Realized for the Value of Health IT

Value Steps Implemented Were:

Satisfaction
-Precise risk scoring alerts prevent alarm fatigue
-Nurse satisfaction is improved as data empowers them to take actions to keep patients safe

Treatment/Clinical
-EWS utilization improved responsiveness and reduced mortality
-EWS provided early interventions by Nurse Practitioner team

Electronic Information/Data
-EWS derives the full potential of data
-Complex algorithm creates output that is user friendly, real time and trended over time

http://www.himss.org/ValueSuite

©HIMSS 2016
Origin of the Rothman Index (RI)

“Our measure of success has always been... preventing what happened to my mother from happening to one other person.”
Science – the Heart of the Model

- Nursing Assessments
- Estimating Risk
- All on a Common Scale
Nursing Assessments – Simplified

• “Head-to-toe” assessments - part of standard nursing school curricula

• Simplified... “charting by exception”... the patient has either “met” or “not met” a minimum standard

 – GI standard - Abdomen soft and non-tender. Bowel sounds present. No nausea or vomiting. Continent.

• Nursing assessments are recorded twice each day

• Every hospital records essentially the same data
Nursing Assessment – Data for the Study

• 42,302 patient visits from two 1-year periods at an 805-bed community hospital

• Excluded data from patients under age 18, as well as psychiatric and maternity
Nursing Assessments – In-hospital Mortality

Odds Ratios – First Assessment

<table>
<thead>
<tr>
<th>Category</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological</td>
<td>9.4</td>
</tr>
<tr>
<td>Respiratory</td>
<td>8.1</td>
</tr>
<tr>
<td>Food</td>
<td>7</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>6.9</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>6.7</td>
</tr>
<tr>
<td>Safety</td>
<td>5.6</td>
</tr>
<tr>
<td>Skin</td>
<td>5.2</td>
</tr>
<tr>
<td>Peripheral...</td>
<td>3.9</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>3</td>
</tr>
<tr>
<td>Cardiac</td>
<td>2.8</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>2.3</td>
</tr>
<tr>
<td>Pain</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Nursing Assessments – 1-Year Mortality

<table>
<thead>
<tr>
<th>Nursing Assessment</th>
<th>1-Year Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>6.7</td>
</tr>
<tr>
<td>Neurological</td>
<td>6.5</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>5.3</td>
</tr>
<tr>
<td>Cardiac</td>
<td>2.3</td>
</tr>
<tr>
<td>Pain</td>
<td>0.8</td>
</tr>
</tbody>
</table>

All p-values < 0.001, except for pain, with a p-value of 0.474
Nursing Assessments – Clinical Implications

• If the first nursing assessments taken upon admission correlate with in-hospital mortality... and

• The last nursing assessments taken prior to discharge correlate with post-discharge mortality... then

• It is reasonable to infer that all nursing assessments gathered throughout the patient’s stay contain significant clinical information

Clinical Implications and Validity of Nursing Assessments: A Longitudinal Measure of Patient Condition from Analysis of the Electronic Medical Record – Michael J. Rothman, Alan B. Solinger, Steven I. Rothman, G. Duncan Finlay, BMJ Open 2(4) 2012.
Science – the Heart of the Model

• Nursing Assessments
• Estimating Risk
• All on a Common Scale
Estimating Risk – Population Norms

Creatinine

Normal Range = 0.5-1.2 (mg/dl)

Lower 5%, Normal 64%, Upper 30%... 87,000 readings... mean=1.33 s.d=1.31

Creatinine Transform

(caps... Low end < .37 then TR=.2, high end > 2.5 then TR=.3)

-10%
-5%
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%

Δ 1st Year Mortality

act-base
calc
Estimating Risk – Expert Opinion

Placing clinical variables on a common linear scale of empirically-based risk as a step toward construction of a general patient acuity score from the Electronic Health Record: A modeling study – Steven I. Rothman, Michael J. Rothman, Alan B. Solinger, BMJ Open 3(5) 2013.
Estimating Risk – Underlying Physiology

Drop in Hemoglobin saturation from 100% to 85% results in a critical fall in pO₂ from 120 mmHg to 60 mmHg... and corresponds to a sharp rise in excess risk

Science – the Heart of the Model

• Nursing Assessments
• Estimating Risk
• All on a Common Scale
A Common Scale – Rothman Index Core Variables

<table>
<thead>
<tr>
<th>Vital Signs</th>
<th>Nursing Assessments (Head-to-Toe)</th>
<th>Nursing Assessments (Other)</th>
<th>Laboratory Tests (blood)</th>
<th>Cardiac Rhythm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Cardiac</td>
<td>Braden Score</td>
<td>Creatinine</td>
<td>Asystole</td>
</tr>
<tr>
<td>Diastolic Blood</td>
<td>Respiratory</td>
<td></td>
<td>Sodium</td>
<td>Sinus rhythm</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic Blood</td>
<td>Gastrointestinal</td>
<td></td>
<td>Chloride</td>
<td>Sinus bradycardia</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Oximetry</td>
<td>Genitourinary</td>
<td></td>
<td>Potassium</td>
<td>Sinus tachycardia</td>
</tr>
<tr>
<td>Respiration Rate</td>
<td>Neurological</td>
<td></td>
<td>BUN</td>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>Skin</td>
<td></td>
<td>WBC</td>
<td>Atrial flutter</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td>Hemoglobin</td>
<td>Heart block</td>
</tr>
<tr>
<td>Peripheral Vascular</td>
<td></td>
<td></td>
<td></td>
<td>Junction rhythm</td>
</tr>
<tr>
<td>Food/Nutrition</td>
<td></td>
<td></td>
<td></td>
<td>Paced</td>
</tr>
<tr>
<td>Psychosocial</td>
<td></td>
<td></td>
<td></td>
<td>Ventricular fibrillation</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
<td></td>
<td>Ventricular tachycardia</td>
</tr>
</tbody>
</table>
Validation – 48-hour Mortality or Discharge to Hospice
Use of RI as an Early Warning System

• RI model has been published in peer-reviewed literature

• The hospital software is commercially available on a subscription basis

• The RI is available for researchers without fee
Implementation at Houston Methodist Hospital

• History of starts and stops
• Used selectively for post event review
• Renewed interest in 2014
• Began as nurse driven initiative with interdisciplinary quality steering committee (July 2014)
• Selected 11 pilot units

• Partnered with vendor of selected EWS
• Staff education and champion support
• Leader driven
• Change management through stories and data
• Daily communications on utilization
• Brought physicians in later
Utilizing the RI as an Early Warning System

• Graphically present a patient’s condition over time using the Rothman Index score. The RI integrates with EHR systems to automate data inputs and visualization.

• The color coded background indicates the RI ranges and adjusts based on rules.
Implementation at Houston Methodist Hospital

- Leveraged the impact of visible data
- EWS reviewed by nurse five times per 24 hour period
 - Bedside handoff at change of shift (in the morning and evening)
 - Care Coordination Rounds
 - Mid-shift (for day and night shift)
Implementation at Houston Methodist Hospital

- Escalation algorithms implemented
 - Call Clinical Emergency Response Team
 - Call Physician
 - Administer medication, O2, treatments
 - Increased surveillance-VS, labs, assessments
- Built momentum through stories and outcomes
- Reported outcomes to Quality Committee of the Board of Trustees, System Quality Council and various nursing and medical staff forums
- 7 additional units implemented in July 2015
- Phase 3, November 2015, remaining units implemented
- Nurse Practitioner oversight implemented
Clinical Outcomes
Jan 2014 - Jun 2015 (9 months pre-RI, 9 months post-RI)

- **30%** decrease in mortality rate (1.34% to 0.93%) in original 11 units before and after implementation
- **32%** lower mortality index (0.70 to 0.48) in original 11 units before and after implementation
- **8%** lower sepsis mortality index (0.77 vs 0.84) when compared to non-Rothman units
Risk-Adjusted Mortality Outcomes

- Risk-adjusted mortality decreased 32% on 11 units after RI implementation (0.70 to 0.48), p-value<0.001
- Non-RI units were unchanged over the same period
- Study analyzed 33,797 encounters

RI Implementation Process Began

<table>
<thead>
<tr>
<th>Period</th>
<th>Rothman Units</th>
<th>Non Rothman Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Q1-Q3</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>2014 Q4</td>
<td>0.49</td>
<td>0.70</td>
</tr>
<tr>
<td>2015 Q1</td>
<td>0.44</td>
<td>0.73</td>
</tr>
<tr>
<td>2015 Q2</td>
<td>0.49</td>
<td>0.62</td>
</tr>
</tbody>
</table>

HMH DataMart, Prepared by HMH Service Line Analytics (pt) ©HIMSS 2016
Clinical Outcomes
Nurse Practitioner Oversight

PROCESS
- Nurse Practitioners reviewing Swim Lanes each night
- Nurse Practitioners assessed each risk patient

OUTCOME
- Over 2,500 patients identified at risk (6 months)
- 5% of time RN/M.D. not aware of decline (132 patients)
- 4 patients were immediately coded
- 10% required further intervention (266 patients)
77 Lives Saved
over 9 months in 11 Rothman units
Potential Applications

• Patient Assignments
• Level of Care Decisions
 – Transfer from ICU to acute care
 – Transfer to post acute care
 – Discharge home
• Code and Emergency Response Review
• Auto page to Physicians/NP
• Post Event Review
• Patient and Family Education
• End of Life Decision Making
• Patient Risk Models
A Summary of How Benefits Were Realized for the Value of Health IT

Satisfaction
-Nurses highly satisfied, confident and engaged in outcomes

Treatment/Clinical
-Reduction in mortality and mortality index before and after
Questions

• Katherine Walsh, MS, DrPH, RN, NEA-BC
 kewalsh@houstonmethodist.org

• Michael Rothman, PhD
 mrothman@perahealth.com